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Abstract

Predicting Click-Through Rate (CTR) is crucial in product and
content recommendation, as it involves estimating the like-
lihood of a user engaging with a specific advertisement or
content link. This task encompasses understanding the com-
plex cognitive processes behind human interactions with rec-
ommended content. Learning varied feature embeddings that
reflect different cognitive responses in various circumstances
is significantly important. However, traditional methods typ-
ically learn fixed feature representations, leading to subop-
timal performance. Some recent approaches attempt to ad-
dress this issue by learning bit-wise weights or augmented em-
beddings for feature representations, but suffer from uninfor-
mative or redundant features in the context. To tackle this
problem, inspired by the Global Workspace Theory in con-
scious processing, which posits that only a specific subset of
the product features are pertinent while the rest can be noisy
and even detrimental to human-click behaviors, we propose a
CTR model that enables Dynamic Embedding Learning with
Truncated Conscious Attention for CTR prediction, termed
DELTA. DELTA contains two key components: (I) conscious
truncation module (CTM), which utilizes curriculum learning
to apply adaptive truncation on attention weights to select the
most critical feature in the context; (II) explicit embedding op-
timization (EEO), which applies an auxiliary task during train-
ing that directly and independently propagates the gradient
from the loss layer to the embedding layer, thereby optimiz-
ing the embedding explicitly via linear feature crossing. Ex-
tensive experiments on five challenging CTR datasets demon-
strate that DELTA achieves new state-of-the-art performance
among current CTR methods. Codes, models, and supple-
mental materials will be released at https://github.com/
ChenZhu9/DELTA.
Keywords: Consciousness; Artificial Intelligence; Recom-
mendation System

Introduction
The prediction of Click-Through Rate (CTR) is a critical task
in online advertising (R. Wang et al., 2021; Shan et al., 2016)
and recommender systems (Zhou et al., 2019). Accurate pre-
dictions of the CTR not only drive revenue for online plat-
forms but also enhance the user experience by presenting rel-
evant content. Many models have been proposed for CTR,
such as Logistic Regression (LR) (Richardson, Dominowska,
& Ragno, 2007), POLY2 (Chang, Hsieh, Chang, Ringgaard,
& Lin, 2010), and tree-based methods (He et al., 2014). In
recent years, employing feature embeddings(Rendle, 2010;
Song et al., 2019; Lian et al., 2018) has become a com-
mon means to augment the model’s representational capacity,
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Figure 1: Illustration of the traditional soft-attention-based
feature interaction and the proposed conscious feature inter-
action.

which can effectively capture the intricate relationships and
patterns within and between the data.

However, most existing methods typically learn fixed fea-
ture embeddings for each feature field (Rendle, 2010; Guo,
Tang, Ye, Li, & He, 2017), which lack the flexibility to adapt
to varying context information. Some approaches have at-
tempted to address this issue by assigning each feature with
multiple embedding vectors (Lian et al., 2018; Yang, Xu,
Shen, Shen, & Zhao, 2020), but they still essentially learn
fixed embeddings as these vectors do not adapt to changes
in context information. Recently, more sophisticated meth-
ods such as MaskNet (Z. Wang, She, & Zhang, 2021) and
Frnet (F. Wang et al., 2022) have been proposed to learn dy-
namic embeddings.

Despite these advancements, all of the aforementioned
methods include all features during context understanding
and embedding refining, neglecting the noise introduced by
redundant features which may harm the CTR prediction, lead-
ing to inferior performance and higher computation complex-
ity. As shown in Figure 1, different users will focus on differ-
ent specific features. For example, assuming that the lower
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person is wealthy. When choosing clothes, he or she will
only take “Style” and “Brand” of the cloth into consideration,
while other information such as “Price” will not be involved
in the thinking process. Additionally, according to “conscious
processing (Baars, 2005)”, the human brain directly ignores
this redundant information while existing methods still con-
sider this. Besides, previous works like DCN (R. Wang, Fu,
Fu, & Wang, 2017) and xDeepFM (Juan, Zhuang, Chin, &
Lin, 2016) have proved that combining both explicit linear
feature interactions and implicit non-linear feature interac-
tions for prediction is more effective than only using the im-
plicit interactions. However, existing dynamic embedding
methods rely on MLPs to generate final predictions (Z. Wang,
She, & Zhang, 2021; Mao et al., 2023; Wu et al., 2024),
or aggregate linear and deep semantic non-linear features to
obtain richer feature representationss (F. Wang et al., 2022),
without fully leveraging the interplay between linear and non-
linear feature interactions. However, simply adding a linear
branch in these models will result in embedding representa-
tion degradation and global performance decrease, since the
sophisticated non-linear feature extraction process will be af-
fected by the coarse linear features that are combined.

To tackle these challenges, we propose a novel model,
namely DELTA, which enables Dynamic Embedding
Learning with Truncated Conscious Attention utilizing con-
scious truncation module (CTM) and explicit embedding
optimization (EEO). More specifically, we draw inspiration
from the Global Workspace Theory (GWT) in conscious pro-
cessing (Baars, 2005) that “conscious attention” focuses on
a limited number of essential elements and is believed to
contribute to humans’ rapid decision-making and efficient
learning. This property makes conscious attention superior
as weights for irrelevant features in vanilla soft attention are
never 0. To mimic human conscious processing, we proposed
CTM, which learns and conducts dynamic truncation on at-
tention weights, thus generating a bottleneck structure that
limits the features that attention can focus on and reduces
computation complexity. Moreover, we rethink the combi-
nation issue of linear and non-linear branches and leverage
explicit embedding optimization (EEO) to learn linear rep-
resentation, which is independent of the non-linear branch.
As an explicit feature interaction branch, the EEO performs
linear feature interactions, while the extracted feature is not
merged to the neural network-based implicit branch for the
final prediction. It directly propagates the gradient from the
loss layer to the embedding layer to enhance the crucial em-
beddings for further feature combinations.

In summary, the proposed CTM and EEO aim to select the
most important features and learn dynamic embedding which
takes the context information in the CTR task into account.
The main contributions are summarized as follows:

• We propose a CTR model that mimics human conscious
processing to fundamentally boost performance.

• A conscious truncation module (CTM) is introduced that
leverages curriculum learning strategy to apply adaptive trun-

cated conscious attention (semi-hard) to select the most crit-
ical feature in different contexts, which boosts the perfor-
mance as well as reduces the computational complexity.

• Explicit embedding optimization (EEO) is proposed that
directly and independently propagates gradient to the embed-
ding layer to enhance the crucial embeddings via explicit fea-
ture interactions, which requires no extra cost in inference.

• Extensive experiments on Criteo, Avazu, Malware,
Frappe, and MovieLens datasets demonstrate that our method
achieves new state-of-the-art performance.

Related works
Feature Embedding Learning In recent years, some
methods have been proposed to learn dynamic embeddings
instead of fixed embeddings. FFM (Juan et al., 2016) learns
field-aware embeddings but still neglects the context informa-
tion. FiBiNET (Huang, Zhang, & Zhang, 2019) makes a step
forward by employing the Squeeze-and-Excitation network to
apply a vector-wise reweighing procedure to the original fea-
tures. To facilitate more fine-grained learning of embeddings,
ContextNet (Z. Wang, She, Zhang, & Zhang, 2021) proposed
instance-guided bit-wise masks to highlight the essential el-
ements while MaskNet (Z. Wang, She, & Zhang, 2021) fur-
ther expands this method by employing sequential or paral-
lel masks. To further extend, FinalMLP applies two distinct
masks generated from different empirically selected feature
sets and Frnet (F. Wang et al., 2022) utilizes self-attention
and MLP to learn context-aware embeddings.

Table 1: Comparison of DELTA with existing context-aware
embedding learning models. Focusing on their approaches to
fusion, context selection, embedding learning (implicit or ex-
plicit), and the method of combining context-aware and orig-
inal embeddings (Hadamard product ⊙ or weighted sum +)

Model Granularity Selection Learning Fusion

FiBiNET Vector-wise % Imp ⊙
ContextNet Bit-wise % Imp ⊙
MaskNet Bit-wise % Imp ⊙
FRNet Bit-wise % Imp&Exp +

FinalMLP Bit-wise !(manual) Imp ⊙

DELTA Bit-wise !(auto) Exp +

As delineated in Table 1, although our method shares cer-
tain aspects with existing methods, it is fundamentally differ-
ent at its core. While all of the above methods utilize MLP to
learn context-aware embeddings implicitly and do not filter
the context automatically, our proposed DELTA mimics con-
scious processing to solve the common feature redundancy
problem ignored by previous mask-based and attention-based
methods and learns context-aware embeddings explicitly.

Curriculum Learning Curriculum learning is an approach
to machine learning that uses a curriculum of tasks to train

1576



F
C

H
ad

m
ard

 P
ro

d
u

ct

Dynamic Embedding Learning

E
lem

en
t-w

ise G
ate1

 
E

lem
en

t-w
ise G

ate2
 

M
L

P
2

M
L

P
1

Click

Not

Click

Not

Click

Not

Click

Not

Explicit

Feature

Interaction

Layers

Explicit Embedding Optimization (EEO)

M
ain

 L
o

ss

Only

Training E
E

O
 L

o
ss

T
o
tal L

o
ss

C
T

M
h

ead
1

C
T

M
h

ead
1

C
T

M
h

ead
2

C
T

M
h

ead
2

DELTA Framework

Curriculum Learning

Value

S
o
ftm

ax
S

o
ftm

ax

C
C

B
C

C
B

S
o
ftm

ax

C
C

B

Query

Key

Query

Key

masked_se

lect

Conscious Truncation Module (CTM)

E ∈ ℝ𝑛×𝑑  
Θ ∈ ℝn×K  

E ∈ ℝ𝑛×𝑑  

𝜆 

 

𝑉𝑚𝑎𝑠𝑘 ∈ ℝ
n×K×d 

Figure 2: Overview framework of the proposed DELTA. CCB is the abbreviation of the Curriculum Conscious Bottleneck.

a model in a sequence that gradually increases in diffi-
culty (Bengio, Louradour, Collobert, & Weston, 2009). This
approach enables machines to learn more structured and effi-
ciently, allowing them to focus on simpler tasks before pro-
gressing to more complex tasks (X. Wang, Chen, & Zhu,
2021; H. Chen et al., 2021). The key problem in curriculum
learning is designing easy-to-hard curricula, and the difficulty
lies in defining the degree of difficulty of the curriculum.

Method
Overview framework
In this section, we present the overview framework of our
proposed DELTA, which consists of several key components
as illustrated in Figure 2. The following subsections will il-
lustrate the computation process of CTM, EFG, and EEO.

Embedding layer. The embedding layer represents the cat-
egorical variables as dense, continuous vectors. This allows
the model to learn a low-dimensional representation of the
categorical variables, which can then be used as input for the
rest of the model. Specifically, let x1,x2, ...,xn be the one-
hot representation of categorical variables, and let V be the
vocabulary size. The embedding of xi can be calculated as:

ei = Eixi (1)

where Ei ∈ RV×d is the embedding matrix and ei ∈ Rd is the
embedding vector for xi.

DELTA network. The dense embeddings of user and item
are then passed to our proposed DELTA network. Taking in-
spiration from high-order thought (HOT) theory in conscious-
ness (Byrne, 1997), which postulates that consciousness con-
sists of low-order mental states and high-order thoughts, we
employ CTM with two heads. The first head is followed by
a deep and narrow MLP to simulate high-order interactions,
while the second employs a shallow and wide MLP to simu-
late low-order interactions. The computation process can be
summarized as follows:
1. Embeddings are concatenated and passed to CTMhead1 and
CTMhead2, which generate context-aware enhanced embed-
dings. Note that we don’t reduce the dimensionality during
linear projection of each head for further fusion.

2. The Element-wise Fusion Gate (EFG) fusions original and
enhanced embeddings to obtain dynamic embeddings.
3. Dynamic embeddings are then passed to MLP1 and MLP2
for further interactions. We use the outer product to combine
the outputs of two MLPs, which symbolizes the interaction
between high-order thoughts and low-order mental states.
4. Then, the final fully-connected layer outputs the prediction
ŷmain = ŷ[MLP1,MLP2] using a sigmoid function.
5. As an auxiliary task, EEO uses the original embeddings E
for explicit interactions. DELTA uses ŷEEO and ŷ[MLP1,MLP2]

during training and uses only the latter during inference.

Loss function. We use the binary cross-entropy loss to train
DELTA. This loss function is defined as:

L =− 1
N

N

∑
i=1

yi log(ŷi)+(1− yi) log(1− ŷi), (2)

where N is the number of examples, yi is the true label, and
ŷi is the predicted probability of the user clicking on the rec-
ommended item. During the training, we use the weighted
sum of two log losses calculated from the two probabilities to
conduct gradient descent:

Ltotal = Lmain +λLEEO, (3)

where λ is the loss weight of the EEO. Note that DELTA uti-
lizes Ltotal to perform gradient descent during training while
using ŷmain for inference, and the rationale will be discussed
in the EEO subsection.

Conscious truncation module (CTM)
To fully understand and utilize the information under differ-
ent contexts to learn dynamic embeddings, we proposed a
novel module named Conscious Truncation Module (CTM).
The word “consciousness” is widely used in different senses.
In this paper, we consider “consciousness” as the “Global
availability” introduced by (Dehaene, Lau, & Kouider, 2017),
which corresponds to the transitive meaning of consciousness
(as in “The user is conscious of the color of the item”). When
the user interacts with the item, only a few features can be at-
tended to among the vast features available, while the rest
remain unconscious (Zhao et al., 2021). Conscious thought
is a set of these features we have become aware of, joined to-
gether and made globally available to others (Bengio, 2017).
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CTM structure. Inspired by the mechanism of human con-
scious processing, we propose a novel truncation that simu-
lates the conscious processing of the users. Instead of the
soft-attention, which uses a weighted average as the output,
we use the highest top-k attention weighted average as the
output, which helps the model focus on the most relevant fea-
tures while ignoring the influence of irrelevant and noisy fea-
tures. Figure 2 shows the structure of the CTM. The compu-
tation process of the CTM unit can be formulated as follows:

First, let the input to the self-attention mechanism be X ∈
Rn×d , where n is the number of feature fields, and d is the di-
mensionality of the feature embedding. We define the query,
key, and value matrices as:

Q = XWQ,K = XWK ,V = XWV , (4)

where WQ,WK ,WV ∈ Rd×d are the weight matrices for the
query, key, and value, respectively.

Next, compute the similarity between the query and key
matrices using the dot product and divide it by the square
root of the key dimensionality. Then, we apply the softmax
function to this matrix to obtain the attention weights w:

w = so f tmax(
QKT
√

dk
). (5)

After softmax, we calculate consciousness-inspired trunca-
tion based on attention weights:

θi =

{
wi if wi ≥ wtop−k

/0 otherwise
, (6)

where k is the size of the consciousness bottleneck and σtop−k
is the k-th highest weight in attention weights.

Finally, we use truncated attention weights to compute the
weighted sum of the value matrix as θ ·Vmask. This weighted
sum of the values is then flattened and deemed as enhanced
embeddings E ∈ R1×n·d .

Dynamic consciousness bottleneck with curriculum learn-
ing. For the proposed CTM, the size of the consciousness
bottleneck should be dynamic to select the most critical fea-
ture under different contexts adaptively. Unlike other hyper-
parameters, the bottleneck size can reflect the task’s diffi-
culty, big bottlenecks allow all information to pass and repre-
sent easy tasks, while small bottlenecks limit the information
passed and can be deemed as hard tasks. Therefore, we utilize
curriculum learning to design easy-to-hard curricula, gener-
ally shrinking the bottleneck during training, which enables
our model to build on its previous knowledge and improve its
performance. The detailed algorithm will be presented in the
supplemental materials in the Github repository.

Computation complexity analysis. Directly employing
self-attention to embeddings and conducting full interaction
results in a complexity of O(d2nh), where h is the number of
heads and h equals 2 in DELTA, while the bottleneck lowers
it to O(dKnh), where K is the size of the information bottle-
neck and K < d.

Discussion. Our ability to make decisions quickly across
different items is attributed to the conscious attention com-
putation involved in “human conscious processing”, which
is introduced in GWT (Baars, 2005) and explained in recent
works by Yoshua Bengio and Zhao et al. (2021), and other
cognitive science researches (Koch & Tsuchiya, 2007; Van-
Rullen & Kanai, 2021). A central characterization of con-
scious attention is that it involves a bottleneck, which forces
one to handle dependencies between very few environmental
features at a time. In vanilla soft attention (Vaswani et al.,
2017), weights for irrelevant features are never 0, and learn-
ing vital features will be difficult.

Element-wise fusion gate (EFG)
While our proposed CTM can effectively capture the pair-
wise feature significance in different contexts, it is also neces-
sary to model the general influence of each feature field (Xu,
Zhu, Yu, Liu, & Wu, 2021). We apply an element-wise gate
gate ∈ R1×n·d containing n ·d learnable parameters to fusion
the original embeddings and the enhanced embeddings. We
apply a sigmoid function of the gate to limit the weight of
each element between [0,1], formulated as

EFG1(E,E1) = σ(gate1)×E+(1−σ(gate1))×E1,

EFG2(E,E2) = σ(gate2)×E+(1−σ(gate2))×E2.
(7)

The EFG not only integrates unary feature significance lies
in original embeddings and binary feature relationships mod-
eled by CTM, but also lets different heads of CTM focus on
different aspects of the prediction task by applying two dis-
tinct gates, thus generating dynamic embeddings with better
capability.

Explicit embedding optimization (EEO)
Previous works like DeepFM (Guo et al., 2017) perform lin-
ear feature interactions, and the linear feature is concatenated
with the non-linear feature extracted by the MLP before de-
coding. This fusion can be formulated as

ŷ = I ·M = σ([IMLP, Ilinear][WMLP,Wlinear]), (8)

where I and W are the input and the weight matrix of the final
fully connected layer. We reformulate this problem as gen-
erating predictions from aggerating the output of MLP and
linear interaction branch:

ŷ = σ(OMLP +Olinear) (9)

where OMLP = IMLP ·WMLP and Olinear = Ilinear ·Wlinear. How-
ever, the weight of Olinear is fixed in Eq 9 and as illustrated
in (Mao et al., 2023), MLP shows better performance than lin-
ear interaction and assigning the same weights to these two
branches is inadequate. Nevertheless, it also introduces the
mutual interference issue caused by the combination of fea-
tures at different levels, which affects the prediction perfor-
mance (Bian et al., 2022).

Therefore, to fully exploit the important representations
brought by explicit feature interaction, we propose explicit
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Table 2: Overall Performance of SOTA CTR models on Criteo, Avazu, Malware, Frappe, and MovieLens datasets. “Lloss”
denotes the “Logloss”. The one-tailed t-test shows that our performance advantage over previous SOTA methods is statistically
significant over five datasets. ( ⋆ : p < 10−2,⋆⋆ : p < 10−4)

Type Method Criteo Avazu Malware Frappe MovieLens
AUC ↑ Lloss ↓ AUC ↑ Lloss ↓ AUC ↑ Lloss ↓ AUC ↑ Lloss ↓ AUC ↑ Lloss ↓

S FM 0.8028 0.4514 0.7720 0.3844 0.7309 0.6052 0.9708 0.1934 0.9391 0.2856

H
NFM 0.8072 0.4444 0.7811 0.3810 0.7352 0.5988 0.9746 0.1915 0.9437 0.2945

OPNN 0.8096 0.4426 0.7821 0.3829 0.7408 0.5840 0.9795 0.1805 0.9497 0.2704
CIN 0.8086 0.4437 0.7843 0.3783 0.7395 0.5967 0.9776 0.2010 0.9483 0.2808

E

DCN 0.8106 0.4414 0.7853 0.3790 0.7403 0.5944 0.9789 0.1814 0.9458 0.2685
DeepFM 0.8130 0.4389 0.7856 0.3794 0.7432 0.5924 0.9789 0.1770 0.9556 0.2497

xDeepFM 0.8127 0.4392 0.7851 0.3776 0.7435 0.5920 0.9792 0.1889 0.9578 0.2480
AutoInt+ 0.8128 0.4396 0.7852 0.3769 0.7409 0.5939 0.9786 0.1890 0.9501 0.2813

AFN+ 0.8135 0.4386 0.7834 0.3798 0.7404 0.5945 0.9791 0.1824 0.9509 0.2583
MaskNet 0.8137 0.4381 0.7835 0.3794 0.7411 0.5935 0.9802 0.1783 0.9618 0.2372
DCN-V2 0.8139 0.4382 0.7841 0.3775 0.7443 0.5913 0.9823 0.1750 0.9624 0.2327
FRNet 0.8138 0.4383 0.7845 0.3774 0.7445 0.5909 0.9830 0.1607 0.9679 0.2278

FinalMLP 0.8139 0.4380 0.7860 0.3772 0.7443 0.5911 0.9832 0.1597 0.9670 0.2308
DELTA 0.8147⋆⋆ 0.4374⋆⋆ 0.7878⋆⋆ 0.3768 0.7451⋆ 0.5901⋆⋆ 0.9842⋆⋆ 0.1551⋆⋆ 0.9690⋆⋆ 0.2191⋆⋆

embedding optimization (EEO), disentangling the Olinear,
deeming it as an auxiliary task, and assigning weight λ to
it. We disable EEO during inference since the sophisticated
non-linear feature interactions outperform the coarse linear
interactions. Different from previous methods, the EEO inde-
pendently models the high-order feature interactions, which
directly propagates gradient from the loss layer to the embed-
ding layer to enhance the crucial embeddings. The EEO not
only avoids the mutual interference from the combination of
linear and non-linear features but also exploits the network’s
ability to adaptively enhance the specific crucial embeddings
for further feature interaction. Our EEO can employ vari-
ous explicit high-order architectures, in this paper, we adopt
cross-net to instantiate the EEO.

Experiments
We conduct extensive experiments to answer these questions:

Q1: How does DELTA perform compared to state-of-the-
art methods for CTR prediction?

Q2: What is the performance improvement of each pro-
posed module compared with the baseline model?

Q3: How do the consciousness bottleneck size of the CTM
impact its performance?

Experiment datasets and evaluation metrics
We evaluate the proposed DELTA on the five challenging
CTR datasets: Criteo, Avazu, Malware, Frappe, and Movie-
lens. The details of these datasets are summarized in the sup-
plemental materials. Following (F. Wang et al., 2022; Yang
et al., 2020; Cheng, Shen, & Huang, 2020), we randomly
split instances by 8:1:1 unless specified for training, valida-
tion, and testing. Our experiments employed two evaluation
metrics: AUC (Area Under ROC) and Logloss. It has been
widely acknowledged in many works (B. Chen et al., 2021;
Xu et al., 2021) that an improvement of 0.0005-level in AUC
will lead to a significant increase in the company’s revenue.

Parameters settings
We implement all models and experiments using py-
torch (Paszke et al., 2019) and fuxictr (Zhu, Liu, Yang,
Zhang, & He, 2021). We set the batch size for all datasets
to 4,096 and the learning rate to 0.0001. The embedding size
is 10 for Criteo, Avazu, and Malware and 20 for Frappe and
MovieLens, respectively. For the first DNN layers, we assign
a [400,400,400] 3-layer DNN with a dropout rate equals to
0.5 following previous works (F. Wang et al., 2022). For fair
comparisons, we only use the same reported hyperparameters
over five different datasets.

Baselines
We compare DELTA with the following eleven competitive
methods, some of which are state-of-the-art models for CTR
prediction. Detailed descriptions of these methods are in-
cluded in the related works and supplemental materials. We
classify these methods into three types:
1.Second-Order: FM (Rendle, 2010). It models both first-
order and second-order feature interactions.
2.High-Order: NFM (He & Chua, 2017), OPNN (Qu et al.,
2018), CIN (Lian et al., 2018). They can model feature inter-
actions higher than second-order.
3.Ensemble: DCN (R. Wang et al., 2017), DeepFM (Guo et
al., 2017), xDeepFM (Lian et al., 2018), AutoInt+ (Song et
al., 2019), AFN+ (Cheng et al., 2020), DCN-V2 (R. Wang
et al., 2021), MaskNet (Z. Wang, She, & Zhang, 2021), FR-
Net (F. Wang et al., 2022), FinalMLP (Mao et al., 2023).
These models adopt parallel or stacked structures to integrate
different feature interaction methods.

Performance comparison (RQ1)
We run DELTA on every dataset 5 times and report the aver-
age results, then we conduct t-tests to compare DELTA with
several strong baselines, and the results are summarized in
Table 2, from which we have the following observations:.
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Figure 3: Performance comparison of DELTA module variants.

In contrast to methods that use Deep Neural Networks to
model interactions, FM and NFM underperform because they
can only model second-order explicit feature interactions,
which restricts their capabilities.

Ensemble methods such as DCN-V2 (R. Wang et al., 2021)
and xDeepFM (Lian et al., 2018) show robust performance
across all datasets, demonstrating the effectiveness of com-
bining implicit feature interactions and explicit feature inter-
actions in the models.

Dynamic embedding learning methods such as FR-
Net (F. Wang et al., 2022) and FinalMLP (Mao et al.,
2023) show robust performance across all datasets. However,
MaskNet (Z. Wang, She, & Zhang, 2021) lost its advantage
on Avazu and Malware datasets, indicating that mask-based
dynamic embedding methods might be data-dependent.

DELTA outperforms all other models in both AUC and
Logloss on all five datasets. As shown in Table 2, the most
significant improvement is observed on the Avazu dataset,
where DELTA shows a relative improvement of 0.16% over
the second-best performing model. There is a trade-off be-
tween AUC and logloss across all models. In the real-world
scenario, an increase in AUC will fundamentally boost the
revenue (Zhang, Qin, Guo, Tang, & He, 2021). Overall, the
results show the cutting-edge performance and generalization
ability of DELTA on multiple datasets.

Ablation study (RQ2)
We conduct experiments on Criteo and Avazu to prove that
the design of CTM, EFG, and EEO in DELTA plays an es-
sential role in improving the performance of CTR prediction.
We compare DELTA with several variants. CTMsoft employs
soft-attention to learn dynamic embeddings. CTMmask uti-
lizes a bit-wise mask technique from MaskNet (Z. Wang,
She, & Zhang, 2021) for the same purpose. Another variant,
CTMfs, adopts the feature selection method from FinalMLP.
CTMca uses the context-aware method from FRNet. We also
consider a version of DELTA without the EFG, labeled as
w/o EFG. In addition, EEOconcat represents that the output
of EEO is concatenated to DELTA’s final layer instead of be-
ing an auxiliary task. EEOFM changes the explicit interaction
structure of EEO from cross-net to factorization machine

The ablation study results are presented in Figure 3. We
can observe the particular design of every module in DELTA

Table 3: Impact of consciousness bottleneck’s size on the
Criteo dataset. (Without EEO)

CTM size AUC Improvement

39 (Soft-attention) 0.8136 /
34 0.8137 0.01%
29 0.8141 0.05%
24 0.8142 0.06%
19 0.8139 0.03%
14 0.8128 -0.08%

Curriculum 0.8144 0.08%

stably improves the performance.

Hyper-parameter study (RQ3)
We analyze the influence of the consciousness bottleneck’s
size in eq 6 on the Criteo dataset in Table 3. First, we em-
pirically set the consciousness bottleneck’s size to (39∼19),
we can observe that with the decreasing of the size, the AUC
first increases and then decreases. Decreasing the bottleneck
size will force the model to focus on the most important fea-
ture interaction, thus improving performance, while when the
bottleneck is too small, vital information will inevitably be
left out and derogate the performance of the model. Then, we
use the curriculum learning algorithm (“Curriculum”) to dy-
namically learn the bottleneck size, and the best performance
shows its effectiveness.

Conclusion
In this paper, we introduce a new CTR framework called
DELTA that incorporates human conscious processing. We
investigate a conscious truncation module (CTM), which
leverages curriculum learning to learn adaptive truncation on
attention weights to select the most critical feature under dif-
ferent contexts to learn dynamic feature representations. We
further improve the learning of embedding representations by
proposing an explicit embedding optimization (EEO), which
independently propagates gradient from the loss layer to the
embedding layer to explicitly enhance the crucial embed-
dings. Note that the simple yet effective EEO can be simply
removed and requires no extra cost during inference. The ex-
periment results on five real-world CTR datasets demonstrate
that our DELTA outperforms the state-of-the-art methods.
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